II.

Wasserstein Generative Adversarial Networks and
Their Applications

Kyle Astroth

Introduction

In 2014, Tan Goodfellow and his colleagues proposed the machine learning architecture of the
Generative Adversarial Network (GAN), a generative model that can produce images, text, or
music. [1] In 2016, Tim Salimans alongside Goodfellow and other OpenAl researchers responded
to the initial GAN paper with a paper on improved techniques for training GANs that discussed
methods to stabilize training and encourage convergence. [2] This research directly led to the
development of the Wasserstein GAN (WGAN) and subsequent papers by Martin Arjovsky and
his colleagues. [3][4] The Wasserstein GAN aimed to reduce mode collapse and create more
stable training than the original GAN. Today, there are many interesting applications of
Wasserstein GANs including data augmentation for emotion recognition [5] and singing voice
synthesizers [6].

Problem Statement

While the initial Generative Adversarial Network architecture was groundbreaking in the
machine learning community, it was challenging to train and faced several issues such as hard to
achieve nash equilibrium, vanishing gradient, mode collapse, and lack of an evaluation metric.
These are important terms when discussing GANs and can be defined as follows. Nash
equilibrium is a game theory concept where the optimal outcome of a game is where there is no
incentive to deviate from the initial strategy. The vanishing gradient problem occurs when the
gradient gets smaller as we move backwards through the hidden layers of a neural network. This
means that neurons in the earlier layers learn much slower than neurons in later layers. Mode
collapse occurs in generative models when the generator can only produce a single type of output
or a small set of outputs. GAN evaluation is still a discussed topic, and there is no one agreed
upon performance metric for comparing models. The Wasserstein GAN attempted to address
some of these problems with the Wasserstein Distance, and it is important to define the three
relevant metrics for quantifying the similarity between two probability distributions:
Kullback-Leibler (KL) divergence, Jensen-Shannon (JS) divergence, and Wasserstein distance.
KL divergence measures how one probability distribution p diverges from a second expected
probability distribution g, and achieves the minimum when p(x) == q(x) everywhere. JS
divergence measures the similarity between two probability distributions, but is bounded by [0,
1] and is symmetric rather than asymmetric. The Wasserstein, or Earth Mover’s, distance is a
measure of distance between two probability distributions. It describes the least distance, or

II1.

minimum cost, of moving one pile of “earth” — a certain distribution — to form a different pile of
“earth” — another distribution. See Table 1 for the relevant equations, and Figure 1 for a
visualization of Wasserstein distance. Finally, it is also important to understand what it means for
a function to be K-Lipschitz continuous when discussing WGANSs. A real-valued function

f:R = Ris considered K-Lipschitz continuous if there exists a real constant K > 0 such that,
for all x,x, € R:

) = ()| £ Klxi —x2

Survey of Methods

Generative Adversarial Networks are based on Game Theory and mimic a minimax two-player
game. The architecture consists of simultaneously training two models: a generative model, G,
and a discriminative model, D, that estimates the probability that a sample came from the training
data rather than G. [1] A popular metaphor is of an art forger, the generator, and an art critic, the
discriminator. The generator and the discriminator can be defined by multilayer perceptrons, with
G generating samples by passing a random noise vector through a multilayer perceptron, and the
system can be trained with backpropagation. To learn the generator’s distribution p, over data x,

we define a prior on input noise variables pz(z), then represent a mapping to data space as
G(x; Gg), where G is a differentiable function represented by a multilayer perceptron with
parameters Bg. We also define a second multilayer perceptron D(x; Gg) that outputs a single

scalar. D(x) represents the probability that x came from the data rather than p,. We train D to
maximize the probability of assigning the correct label to both training examples and samples
from G, while simultaneously training G to minimize log(1 - D(G(z))). This gives us the
following loss function to optimize [1]:

m(i;n max V(D,G) = Egpu(@log D(®)] + E.p, (2)log(1 — D(G(2)))]

In practice, the objective function may not provide a sufficient gradient for G to learn well, so
when G is poor, D can reject samples with high confidence. In this case, rather than training G to
minimize log(1 - D(G(z))), G can be trained to maximize log D(G(z)) to provide much stronger
gradients early in learning without altering the fixed point of the dynamics of G and D. In
Theorem 1 of their paper, Goodfellow et al. prove that this minimax game has a global optimum
for p, = Puuq and in Proposition 2 they demonstrate that if G and D have enough capacity, and at
each step of the loss function D is allowed to reach its optimum given G, and p, is updated to
improve this criterion:

Bz~ pau 108 D ()] + Eg o, [log(1 = Di())]
then p, converges to p,,, [1]. See Figure 2 for the proposed GAN algorithm.

In Improved Techniques for Training GANs, Salimans et. al use new techniques to improve the
performance of the original GAN by encouraging convergence. These techniques include: feature
matching, minibatch discrimination, historical averaging, one-sided label smoothing, and virtual

batch normalization. Feature matching addresses the instability of GANs by specifying a new
objective for the generator that prevents it from overtraining on the current discriminator. Instead
of directly maximizing the output of the discriminator, the new objective requires the generator to
generate data that matches the statistics of the real data. [2] In this scenario, the new loss function
can be defined as:

1B mpian £(@) = Eanp (2 £(G(2))][3-
Minibatch discrimination is a strategy to avoid the generator collapsing to a parameter setting
where it always emits the same point by allowing the discriminator to look at multiple data
examples in combination, rather than isolation. Each minibatch, the closeness between every pair
of samples c(x; x;) is approximated to find the overall summary of one data point:
o(xl,) = ch(xi, xj). o(xi)is then explicitly added to the input of the model. [2] When applying

historical averaging, each player’s cost is modified to include a term
18 — %zizle[l]nz, where 0[i]is the value of the parameters at past time i. This addition penalizes

the training speed when 0 is changing too dramatically in time. [2] One-sided label smoothing
replaces the 0 and 1 targets fed to the discriminator with smoothed values such as 0.9 and 0.1
because it has been shown to reduce the vulnerability of neural networks to adversarial examples.
[2] Finally, with virtual batch normalization each example x is normalized based on the statistics
collected on a reference batch of examples chosen at the start of training and x itself. This solves
the issue of batch normalization causing the output of a neural network for an input example x to
be highly dependent on several other inputs x’ in the same minibatch. By applying these
techniques, the authors were able to achieve state-of-the-art results with a model that generates
MNIST samples indistinguishable from real data by humans and CIFAR-10 samples with a
human error rate of 21.3%. [2]

Following these two notable papers on GANs, Arjovsky et al. proposed Wasserstein Generative
Adversarial Networks as an alternative to traditional GANs that improve the stability of learning,
solve mode collapse, and provide meaningful learning curves that are useful for debugging and
hyperparameter searches. [3] Their paper contains extensive theoretical work highlighting the
connections to different distances between distributions, and while the previous GAN paper
touched on semi-supervised learning, the WGAN paper focuses on unsupervised learning. In the
loss function for the original GAN, it has been shown that the minimization of the
Jensen-Shannon divergence:

T8 5 = %(KL(P*HP* ;Lpg)JrKL(ngp* gp‘g'))
is induced between the real distribution p* and the generator distribution pe. In Theorems 1 and
2, it is proven that the JS divergence is not a “sensible” cost function when learning distributions
supported by low dimensional manifolds, but the Wasserstein distance is “sensible.” This is
because even when two distributions are located in lower dimensional manifolds without
overlaps, the Wasserstein distance can still provide a meaningful and smooth representation of
the distance. [3] Thus, a transformation of the GAN loss function based on
Kantorovich-Rubinstein duality is proposed:

Iv.

1
Wy, pg) = — Ssup lE.’CN[), [F)] = [E,x‘fvpﬂ [f(x0)]
Ky, <k

Where the function fof the new loss function must satisfy ||f]| S K, or that it should be

K-Lipschitz continuous. This results in the discriminator being trained to learn a K-Lipschitz
continuous function to compute the Wasserstein distance, rather than sorting real from fake
samples. Thus, the discriminator is referred to as a ‘critic’ since it is no longer trained to classify.
Further, we see that if we have a parameterized family of functions {f,,},.c; that are all
K-Lipschitz for some K, the modified GAN loss function becomes:

Wp,, pg) = gleau)} [Exwp,,[fw(x)] - [Ezwp,(z) [(go(2))]

as proved in Theorem 3. [3] The WGAN algorithm is shown in Figure 3. The remaining problem
concerning WGANS is maintaining K-Lipschitz continuity of f " during the training so all

parameters w lie in a compact space. The authors’ simple solution is to clamp the weights to a
fixed box after each gradient update. [3]

However, as discussed in Improved Training of Wasserstein GANs by Gulrajani et al., there are
issues that arise due to the use of weight clipping to enforce a Lipschitz constraint on the critic.
Weight clipping in WGANS leads to optimization difficulties, so an alternative is proposed:
penalizing the norm of the gradient of the critic with respect to its input. [4]

Conclusion

As WGAN:Ss are still an open research topic, there have been many fascinating research papers
and developments since their introduction in 2016. In 2018, research by Yun Luo and Bao-Liang
Lu on data augmentation using a WGAN was published by IEEE. [5] Their paper introduced a
Conditional WGAN framework for electroencephalography (EEG) data augmentation that
significantly improved the accuracies of emotion recognition models — which typically suffer
from low accuracy due to lack of EEG data. In 2019, IEEE published work by Chandna et al. that
presented a generative model for singing voice synthesis that was trained using the WGAN
framework. [6] Some interesting continued reading on WGANS can be found in Wasserstein
GANs Work Because They Fail (to Approximate the Wasserstein Distance), a 2021 paper by
Cambridge researchers that examines how the theoretical foundations and the practical
implementation of WGANs fundamentally differ. It argues that for good WGAN:Ss, the loss
function typically does not approximate the Wasserstein distance well, and that good generators
do not produce high quality images despite a poor approximation by the discriminator, but
because of it. [7] GANs, and WGAN:Ss, are an exciting, impactful, and still relatively new field of
Machine Learning research that will continue to be studied and improved upon in the years to
come.

V. Figures

Table 1

Comparing Two Probability Distributions

Jensen-Shannon (JS) Divergence

Dys(pllg) =

P+q

—DKL(P”)+ DKL(fIH

Kullback-Leibler (KL) Divergence

P()

Du(llg) = / p(w)log 28

Wasserstein (Earth Mover’s) Distance

W(B,F)=iaf E_[lo— 3l

~T(z,y)~y

1
7 WsHlngjl;l[f] Bl

Figure 1

Figure 2

Figure 3

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do
e Sample minibatch of m noise samples {z“), o
e Sample minibatch of m examples {z(l), o
Ddata(T)-
o Update the discriminator by ascending its stochastic gradient:

ng% 12: [logD (a:“)) + log (1 -D (G (z(l))))} .

, (™)} from noise prior p(2).
,w(m)} from data generating distribution

end for
o Sample minibatch of m noise samples {z(1), ..., (")} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 2w (10 (6(0))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithm 1 WGAN, our proposed algorithm. All exper-
iments in the paper used the default values a = 0.00005,
Cc = 001, m = 64, Neritic = 5.

Require: : «, the learning rate. c, the clipping parameter.
m, the batch size. nic, the number of iterations of the
critic per generator iteration.

Require: : wy, initial critic parameters. 6y, initial genera-
tor’s parameters.

1: while 0 has not converged do

2 fort =0, ..., ngige do

3: Sample {z()}7 | ~ P, abatch from the real data.
4: Sample {29} | ~ p(z) a batch of priors.

5 Juw < Vw[% 2211 fw(x(i))

_% E:Zl fw(gt‘)(z(z)))}

w 4+ w + a - RMSProp(w, gu)

w + clip(w, —c¢, ¢)
end for
Sample {2(V} | ~ p(z) a batch of prior samples.
10: go 4 —Vom Soimy fulge(z?))
11: 0+« 60— a-RMSProp(9, g9)
12: end while

0O %A

VI

References

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio, Generative adversarial nets,
Advances in Neural Information Processing Systems (Z. Ghahramani, M. Welling, C.
Cortes, N. Lawrence, and K. Q. Weinberger, eds.), vol. 27, Curran Associates, Inc.,
2014.

[2] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi
Chen, and Xi Chen, Improved techniques for training gans, Advances in Neural
Information Processing Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R.
Garnett, eds.), vol. 29, Curran Associates, Inc., 2016.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou, Wasserstein generative
adversarial networks, Proceedings of the 34th International Conference on Machine
Learning (Doina Precup and Yee Whye Teh, eds.), Proceedings of Machine Learning
Research, vol. 70, PMLR, 0611 Aug 2017, pp. 214-223.

[4] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville, Improved training of wasserstein gans, Advances in Neural Information
Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[5] Yun Luo and Bao-Liang Lu, Eeg data augmentation for emotion recognition using a
conditional wasserstein gan, 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), 2018, pp. 2535-2538.

[6] Pritish Chandna, Merlijn Blaauw, Jordi Bonada, and Emilia Gmez, Wgansing: A
multi-voice singing voice synthesizer based on the wasserstein-gan, 2019 27th European
Signal Processing Conference (EUSIPCO), 2019, pp. 1-5.

[7] Jan Stanczuk, Christian Etmann, Lisa Maria Kreusser, and Carola-Bibiane Schnlieb,

Wasserstein gans work because they fail (to approximate the wasserstein distance),
2021. arXiv:2103.01678v4 [stat. ML]

