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Abstract

Randomness is an essential resource for information theory, cryptography, and
computation. The goal of randomness extraction is to distill (almost) perfect
randomness from a weak source of randomness. In this report, we first define
classical randomness extractors, or when the source of randomness yields a classical
string X . When considering a physical randomness source, X is itself ultimately
the result of a measurement on an underlying quantum system, and the question
arises of how much classical randomness can we extract from a quantum system.
To understand and analyze this question, we will first provide the relevant quantum
preliminary background, and then define quantum-to-classical (QC) and quantum-
to-quantum (QQ) randomness extractors. Finally, we will explore cryptographic
applications of QC randomness extractors, such as security in the noisy-storage
model, and discuss possible future applications, such as privacy amplification.
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1 Introduction

Randomized algorithms are algorithms that use a degree of randomness as part of their logic.
Randomized algorithms frequently outperform and simplify the best-known deterministic algorithms,
and sources of randomness are a powerful but evasive resource. Further, access to randomness
is an essential tool for cryptography. Randomized algorithms are designed and studied under the
assumption that computers have access to true randomness in the form of a sequence of truly
random bits. However, this randomness is taken from sources that only appear to have randomness,
otherwise known as entropy. Entropy is a term borrowed from physics that refers to the amount
of "disorder" in a system and is the measure of the uncertainty associated with a random variable.
Some examples of these sources of randomness are generating and measuring electromagnetic or
radioactive noise, measuring the timing of past events, or measuring user-dependent behavior [1].
The goal of randomness extraction is to convert these weak sources of randomness into uniformly
random bits, which are measured in terms of the min-entropy. A visual representation of this process
can be seen in Figure 1. This has led to the research and development of Classical Randomness
Extractors (CC-Extractors). In Section 2, we give a thorough introduce the two main concepts of
Classical Randomness Extractors, deterministic and seeded extractors.

Figure 1: High-level diagram of a randomness extractor

We now know, however, that the underlying world is not classical but rather quantum, resulting in
the development of quantum mechanics. Subsequently, a randomness extractor may hold quantum
side information about its (almost) uniformly random output sequence, X . This realization lends
to several questions: where do X come from? How can we hope to harness even weak sources to
obtain a surplus of classical randomness? How much randomness can we obtain from a quantum
source rather than a classical string? [2] Questions such as these have culminated in the study of
Quantum-to-Classical Randomness Extractors (QC-Extractors) with the goal of determining how
we can extract classical randomness from a physical source by performing measurements on the
quantum state of said source. In contrast to the classical world, quantum mechanics allow for the
creation of true randomness given the correct circumstances. It is also important to note that in a
quantum setting, there also exist Quantum-to-Quantum Randomness Extractors (QQ-Extractors)
that we do not measure but determine if the resulting state is quantumly fully random (maximally
mixed) and uncorrelated from the extractor. In Section 3, we introduce the necessary background
quantum preliminaries, and in Section 4, we discuss the construction and evaluation of QC and QQ
Randomness Extractors.

Finally, we will conclude our report in Section 5 by examining the applications of QC-Extractors to
entropic uncertainty relations and cryptographic problems such as noisy storage models, and Section
6 where we explore future directions of this work. Entropic uncertainty relations are fundamental to
quantum mechanics and crucial tools for quantum cryptography. We will provide and discuss the
proof from [2] that any set of measurements forming a QC-extractor yields an entropic uncertainty
relation with respect to quantum side information and thereby obtain relations both for the Shannon
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and the min-entropy. The second application we will discuss is proving security in the noisy-storage
model. The noisy-storage model is a quantum cryptographic model that assumes an adversary is
imperfect or noisy. The study of QC extractors can further be extended to other cryptographic
problems, for example, privacy amplification. We refer the curious reader to the following articles,
lecture notes, and textbooks [2, 3, 4, 5, 6, 7, 8, 9, 10] for further reading on quantum cryptography.

2 Classical Randomness Extractors

As discussed in § 1, randomness extraction is an efficient procedure for taking a sample from an
imperfect random source, X with distribution pX , and "extracting" the pure-randomness, i.e. being
closer to uniformly distributed. A randomness extractor is a function that is applied to the output of a
weakly random entropy source along with a short, uniformly random seed as input, and generates a
highly random output that appears close to uniformly distributed and independent from the source
[11]. Before formally defining a randomness extractor, we will define entropy, or how we measure
the amount of randomness contained in a weak random source, as well as the statistical distance, or
how we measure the closeness of the output distribution to the uniform distribution.
Definition 2.1. (Entropy) The Shannon Entropy of a discrete random variable X is defined as

H(X) = E
[
log

1

pi

]
=
∑
i∈X

pi log
1

pi
,

where pi = Pr[X = i].
Definition 2.2. (Min- Entropy) The min-entropy of a discrete random variable X is

Hmin(X) = min
i

log
1

pi
,

or Hmin(X) is the largest value of k such that all outcomes have the probability of at most 2−k.

In general, we like to guess the most likely outcome, and the probability that we are correct is
Pguess(X) = maxx pX(x). This results in an operational interpretation of the min-entropy as

Hmin(X) = − logPguess(X).

When considering the above definitions, the question arises of why we use the min-entropy as
the measure of uncertainty in cryptography as opposed to the Shannon entropy, which is used in
information theory. Following Shannon’s approach, i(x) = − log pX(x) is the information gained
when we observe X . Thus the Shannon entropy measured the average information gained, i.e.,
H(X) =

∑
x pX(x)i(x). However, when studying cryptography, we are interested in the worst

case, not the average case, and the min-entropy Hmin(X) = minx i(x) is precisely the smallest
information gained. Figure 2 shows the difference between these quantities for a binary random
variable. In general, 0 ≤ Hmin(X) ≤ H(X).
Definition 2.3. (Conditional Min-Entropy) Consider two dependent random variables X and E.
The conditional min-entropy Hmin(X|E) can be written as

Hmin(X|E) = − logPguess(X|E),

where Pguess(X|E) = maxx pX|E(x|E).
Definition 2.4. (Statistical Distance) Let X and Y be two random variables with range I . Then the
statistical distance between X and Y is defined as

∆(X,Y ) ≡ 1

2

∑
i∈I

|Pr[X = i]− Pr[Y = i]| .

For ε ≥ 0, we define the notion of two distributions being ε-close as

X ≈ε Y ⇐⇒ ∆(X,Y ) ≤ ε.

We now formally illustrate the process of randomness extraction. Consider a single party, Alice, who
has access to an n-bit string, xn, obtained from a source X with distribution pX . Perhaps, source X
is correlated to an additional system or environment E. For example, E could contain information
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Figure 2: The comparison between Shannon entropy H(X) and min-entropy Hmin(X) for a binary
random variable X = {0, 1}.

about the generation of the source X or an adversary who has gathered some prior information from
protocols that include X . Alice has no access to system E except the lower bound on the min-entropy
of the source X given environment E, i.e., Hmin(X|E) ≥ k. In the task of randomness extraction,
Alice’s goal is to construct randomness extractor, denoted as Ext, that produces a m-bit string zm,
which is close to the uniform distribution in the statistical distance and uncorrelated with environment
E.

Before formally discussing the construction of a randomness extractor, consider an example that
shows how to extract uniform bits from an i.i.d. (independent and identically distributed) source.
Example 2.5. Consider an i.i.d. binary source X such that Xi = 0 w.p p0 = 1/4 and Xi = 1 w.p
p0 = 3/4. Define the output Z of the randomness extractor Z = Ext(X) := X1 ⊕X2 ⊕ · · · ⊕Xn ∈
{0, 1}, i.e., the parity of all n-bits sequence of X . To find if we can extract uniformly random bits
from an i.i.d. source, we need to show that Pr(Z = 0) ≈ 1/2± ε for sufficiently small ε > 0, i.e.,
Z ≈ε uniform({0, 1}).
Let’s first examine how efficiently our strategy works for n = 2. We need to compute Pr(Z =
0) = Pr(X1 = 0, X2 = 0) + Pr(X1 = 1, X2 = 1) = p20 + p21 = 0.625. Similarly, we can
compute Pr(Z = 1) = 0.375. Also, observe that ∆(X,U2) = 0.25 and ∆(Z,U2) = 0.125, where
U2 ∼ uniform({0, 1}). In other words, the output distribution is not quite uniform, however, Z is
more closer to uniform distribution than X . Hence, following the above analysis for sufficiently large
n, we observe that Z ≈ε U2.

In the above example, we considered a function that takes only the source X as input. We call such
functions deterministic or seedless extractors. Ideally, we wish to construct a deterministic extractor
that, given a source of randomness with high min-entropy, outputs a distribution that is statistically
close to random and near-perfect randomness without requiring an additional source of randomness.
However, in reality, there does not exist a fixed deterministic procedure that can be used to extract
even a single bit of randomness from a source with Hmin(X) ≥ k, even when k = n − 1. The
following proposition provides the proof that it is not possible to construct a deterministic extractor.
Proposition 2.6. Let Ext : {0, 1}n → {0, 1}m be a function taking input from a source. There exists
a weak random source X with Hmin = n− 1 such that for m = 1, Ext(X) is a constant function.

Proof. As defined above, Ext outputs a single bit and must output either 0 or 1 with probability ≥ 1
2 .

Suppose Ext outputs 0, and define X to be the flat distribution on S = {x : Ext(x) = 0}. Then X
has min-entropy of at least n− 1, but Pr[Ext(X) = 0] = 1, meaning the output distribution of Ext
must be a constant.

Therefore, in order to construct a randomness extractor, we must also provide additional input, a seed,
that is uniformly random. As seen in Figure 3, every seeded extractor has five different parameters:
the length of the source n, the output length m, the length of the seed d, the min-entropy threshold k,
and the statistical error of the extractor ε.
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Figure 3: Classical-to-classical (seeded) randomness extractor

Definition 2.7. (Seeded Extractor) The function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)
extractor if for all X on {0, 1}n with Hmin(X) ≥ k,

∥E(X,Ud)− Um∥1 < 2ε,

where Ud is a uniform variable on d bits and Um is uniform on m bits.

Recall that our motivation for extractors was to simulate randomization given only a weak random
source, or without a seed. If the seed is of logarithmic length, i.e. d = O(log n), then instead of
selecting it randomly we can enumerate all possibilities for the seed and take a majority vote. In
summary, the randomness used for seeds can be eliminated by running all the possible seeds and
taking the majority value. This is formally defined by the following lemma.

Lemma 2.8. Let A(w, r) be a randomized algorithm such that A(w,Um) has error proba-
bility at most γ, and let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) extractor. Define
A′ = majorityy∈{0,1}d{A(w,Ext(x, y))}. Then for every k-source2 X on {0, 1}n, A′(x,X) has
error probability of at most 2(γ + ε).

As stated above, we wish to extract randomness from weak random source X without any additional
uniform randomness. Therefore it follows that we want to keep Y as small as possible, even though
X , and k, could be very large. In other words, we would like a long output (i.e. large m) using a
short seed (i.e. small d). This motivates the following definition of strong extractors.

Definition 2.9. (Strong Extractor) Extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-
extractor if for every k-source X on {0, 1}n, (Ud,Ext(X,Ud) is ε-close to (Ud, Um). Equivalently,
Ext′(x, y) = (y,Ext(x, y)) is a standard (k, ε)-extractor.

Before we discuss the explicit construction of a strong extractor, we revisit the question of why the
min-entropy is a correct measure to quantify the amount of randomness that can be extracted from a
given source? Informally, we can argue that the min-entropy is an upper bound on the amount of
randomness that can be extracted: there does not exist any strong extractor that has an output length
more than Hmin(X). To understand this, first recall that Hmin(X) = − logPguess(X). Suppose
that we now apply some function f to source X , then how difficult is it to guess f(X), i.e., what is
Pguess(f(X))?. Clearly, we can guess f(X) by first guessing X and then applying f to our guess.
Thus, we get Pguess(f(X)) ≥ Pguess(X). However, this is equivalent to

Hmin(f(X)) ≤ Hmin(X).

In other words, this also means that the output of the extractor Ext is obtained as a function f(X) =
Ext(X, y), for a fixed seed y, must have min-entropy at most Hmin(X). Thus, the output Ext(X, y)
can be uniform on at most Hmin(X) bits. How about a converse: does there exist a strong extractor

2A random variable X is k-source if Hmin(X) ≥ k.
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that can extract approximately Hmin(X) bits from any k-source X? The answer to this question is
yes.

We now explore a construction of randomness extractors that achieves well-performing parameters
for this application, the 2-universal extractor. Our goal for our parameters is large m, or extracting as
much randomness as possible, using the smallest possible seed and error, or small d and ε. First, we
must define a 2-universal family.
Definition 2.10. (2-universal family) A family of hash functions F = {f : {0, 1}n → {0, 1}m} is
called 2-universal if for every two strings x, x′ ∈ {0, 1}n with x ̸= x′, and any two z, z′ ∈ {0, 1}m,
we have

Pr
f∈F

[f(x) = z ⊕ f(x′) = z′] =
1

22m
.

Using 2-universal families, we are able to define 2-universal extractors as follows.
Definition 2.11. (2-universal extractor) Let F = {fy : {0, 1}n → {0, 1}m, y ∈ {0, 1}d} be a
2-universal family of hash functions such that |F| = 2d. The associated 2-universal extractor is

ExtF : {0, 1}n × {0, 1}d → {0, 1}m,ExtF (x, y) = fy(x).

Conceptually, consider ExtF as using a seed y to select a function from the family F uniformly at
random and returning the output of the function when evaluated on the source X . To evaluate how
good this extractor is, we use the leftover hash lemma (insert reference), which is defined as follows.
Definition 2.12. (Leftover hash lemma) Let n and k ≤ n be arbitrary integers, ε > 0, m =
k − 2 log(1ε ), and F = {f : {0, 1}n → {0, 1}m} a 2-universal family of hash functions. Then the
2-universal extractor ExtF is a (k, ε)-strong seeded randomness extractor.

Due to page limit restrictions, for the leftover hash lemma proof, we refer the reader to [3].

3 Preliminaries

In this section, we recall the basic Dirac notation of quantum information science which we will use
throughout this article. We refer the reader to [9, 10] for additional reading in quantum computation
and quantum information. The Dirac notation represents a vector using the left vertical bar and the
right angle bracket, known as ket vector. Thus it can be understand by the following map: x→ |x⟩
for any index x. The conjugate transpose of the ket vector |x⟩ is known as bra vector and denoted
as ⟨x| = |x⟩†. In other words, the |x⟩ in Dirac notation represents the column vector, whereas ⟨x|
represents the row vector (conjugate transpose of the column vector |x⟩).

3.1 Mathematical Background

In this subsection, we go through some of the mathematical tools that will be required to understand the
QC and QQ randomness extractor. We restrict ourselves to definitions and a few important properties;
for detailed understanding, we refer the reader to cite wilde2013quantum, nielsen2002quantum.
Definition 3.1. (Conjugate Transpose) The conjugate transpose or Hermitian transpose of a m× n
complex matrix A is a n×m matrix A† obtained by transposing A followed by applying complex
conjugate on each entry or vice versa, i.e., A† = ¯(AT) = (Ā)T.

For real matrices, the conjugate transpose is just the transpose, A† = AT.
Definition 3.2. (Hilbert Space) A Hilbert space is a complex vector space H with an inner prod-
uct ⟨x||y⟩ ≡ ⟨x|y⟩, where x, y ∈ H, such that the norm defined as ∥x∥ =

√
⟨x|x⟩ make H a

complete metric space. It allows generalizing the methods of linear algebra and calculus from
(finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional.
Definition 3.3. (Linear Operator) A linear operator A on a Hilbert space H is a mapping A : H →
H such that

A

(∑
i

αi|xi⟩

)
=
∑
i

αiA|xi⟩.

The set of linear operators is denoted as L(H,H).
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Definition 3.4. (Trace of Linear Operator) The trace of an operator A ∈ L(H,H) is defined as

Tr(A) =
∑
i

⟨i|A|i⟩,

where {|i⟩} is any orthonormal basis of H.

Definition 3.5. (Hermitian Operator) A linear operator A ∈ L(H,H) is hermitian if A† = A.
Definition 3.6. (Positive Semi-Definite Operator) A hermitian operator A is positive semi-definite
if all its eigenvalues are non-negative.
Definition 3.7. (Adjoint) The adjoint or Hermitian conjugate of the operator A ∈ L(H,H) is a
unique linear operator A† ∈ L(H,H) such that for all |x⟩, |y⟩ ∈ H,

⟨x| (A|y⟩) =
(
A†|x⟩

)† |y⟩.
In the following subsections, we go through the mathematical framework of quantum mechanics,
namely, formalism of quantum states and time-evolution of quantum states. We refer the reader to
[12, 13, 14] for additional understanding of concepts in quantum mechanics.

3.2 Quantum States

Definition 3.8. (Quantum System) A Quantum System is a complex vector space with an inner
product, i.e., a Hibert space H. By following the convention in quantum cryptography, we assume all
Hilbert Space is finite-dimensional.
Example 3.9. The simplest quantum system is a qubit or quantum bits, which is a two-dimensional
quantum system.
Definition 3.10. (Quantum States) Let |A| be the dimension of a quantum system A acting on
Hilbert space HA, and L(A) denote the set of linear operators on system A. We define a quantum
state on systemA as ρA ∈ S(A) where S(A) = {σA ∈ L(A)|σA ≥ 0, Tr(σA) = 1}, i.e., a quantum
state is a unit-trace and positive semi-definite linear operator on HA.
Example 3.11. Let |0⟩ and |1⟩ form an orthonormal basis for a qubit system H2. Then any arbitrary
qubit state ρ2 can be written as |ψ⟩⟨ψ| where |ψ⟩ ∈ H2 is an arbitrary superposition of the basis
state, i.e., |ψ⟩ = α|0⟩ + β|1⟩ such that α and β are complex numbers and |α|2 + |β|2 = 1. After
simplifying, ρ2 = |α|2|0⟩⟨0| + αβ̄|0⟩⟨1| + βᾱ|1⟩⟨0| + |β|2|1⟩⟨1|. We can also write ρ2 in matrix
form w.r.t basis {|0⟩, |1⟩} as

ρ2 =

(
|α|2 αβ̄
βᾱ |β|2

)
.

We call ρA a pure state, if it has rank 1. If Tr(ρA) ≤ 1, we call ρA a sub-normalized state. We use
the notation S≤(A) to represent a collection of sub-normalized states of the system A. For the rest of
the paper, the term state is referred to sub-normalized state unless otherwise specified.
Definition 3.12. (Multipartite Quantum States) We define a (separable) multipartite system3

A1A2 · · ·An by the tensor product of individual quantum systems A1, A2, · · · , An acting on the
Hilbert space HA1A2...An , where

HA1A2...An
= HA1

⊗HA2
, ...,⊗HAn

.

Then, a multipartite quantum state ρA1A2···An
∈ S≤(A1A2 · · ·An).

If n = 2, the quantum state ρA1A2
is known as bipartite quantum state. The quantum state of the

subsystem A1 is defined as ρA1
= TrA2

[ρA1A2
], where TrA2

is the partial trace4 on system A2. In
other words, the quantum state of the subsystem A1 is the restriction of ρA1A2

onto HA1
. Similarly,

the quantum state of the subsystem A2 can be obtained by partial tracing the system A2.

3A multipartite system A1A2 · · ·An is called a separable system if it can be written as tensor product of
individual systems, i.e., A1A2 · · ·An = A1 ⊗ A2 ⊗ · · · ⊗ An, otherwise the multipartite system is called
entangled system. We will mainly consider the bipartite state, where two systems A1 and A2 are combined
using the tensor product and written as A1A2 = A1 ⊗A2

4For brief understanding partial trace information please see: Partial Trace (wikipedia)
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Definition 3.13. (Purification) Purification is the completion of a quantum system by adding a
purifying or reference system R. Let ρA ∈ S≤(A) be a sub-normalized state. A purification of ρA is
a pure bipartite state |ρ⟩AR on the purifying system R and the original system A such that

ρA = TrR(|ρ⟩⟨ρ|AR).

Purification is not unique. However, all possible purifications of a quantum state ρA are related by an
isometry 5 acting on the reference system R [9, Theorem 5.1.1].

Definition 3.14. (Classical States) For some set X , let {|x⟩}x∈A be the orthogonal basis of a Hilbert
space HX , where each basis basis vector |x⟩ corresponds to a particular element x ∈ X . A classical
state, or a c-state, ρX defined using the distribution PX over X as follows:

ρX =
∑
x∈X

PX(x)|x⟩⟨x|.

(Classical-Quantum States) The joint system of a classical system X and a quantum system A is
defined as

ρXA =
∑
x∈X

PX(x) |x⟩⟨x|X︸ ︷︷ ︸
classical

⊗ ρxA︸︷︷︸
quantum

,

and such states are called classical-quantum states, or cq-states. In general, when a multipartite state
is partly classical and partly quantum, we use c and q to label the classical and quantum systems,
respectively.

Example 3.15. In quantum cryptography, we often encounter cq-states. Suppose Alice tosses a fair
coin, and if the head appears, she prepares a |0⟩ state and |1⟩ otherwise. Alice then transmits her state
to Bob. Thus, if Alice state is |0⟩ or |1⟩, then Bob will receive ρB0 or ρB1 , respectively. The joint state
of Alice and Bob can be written as a cq-state of the form:

ρAB =
1

2

∑
x∈{0,1}

|0⟩⟨0|A ⊗ ρBx .

3.3 Quantum Operations

Definition 3.16. (Quantum Measurement) Consider a set of positive semi-definite operators
{MA2

x }x∈X acting on system A2 such that
∑

xM
A2
x = IA2 . For a bipartite system A1A2, a

measurement map on the system A2 is defined as TA1A2→A1 : L(A1A2) → L(A1),

T (IA1 ⊗MA2
x )A1A2→A1 =

∑
a1a2

⟨a1a2|(IA1 ⊗MA2
x )|a1a2⟩|a1⟩⟨a1|

where {|a1⟩}, {|a2⟩} are standard orthogonal bases of A1, A2 respectively. The subscript x is used
as a label for measurement outcomes. Figure 4 provides the schematic of a quantum measurement.
The probability of observing x on system A2 is given as pA2

x = ⟨a1a2|(IA1 ⊗ MA2
x )|a1a2⟩ =

⟨a2|MA2
x |a2⟩ = Tr(MA2

x |a2⟩⟨a2|)6.

The set of positive semi-definite operators {MA2
x }x∈X referred as positive valued measurements

(POVMs). In quantum information theory and cryptography, we are mostly interested in the probabil-
ities of measurement outcomes but not the output state after measurement. Thus, POVMs provide
simpler expressions for finding probabilities of outcomes.

Example 3.17. Consider a distribution pX and the classical state ρX =
∑

x pX(x)|x⟩⟨x|. If we
measure ρX in the standard basis, i.e. {|x⟩}, with associated POVM Mx = |x⟩⟨x|, we obtain
outcome x with probability Tr(MxρX) = Tr(|x⟩⟨x|ρx) = ⟨x|Mx|x⟩pX(x) = pX(x). Thus, we
observe that ρX indeed captures the classical distribution given by the probabilities px.

5Given two Hilbert spaces H1 and H2 with dim(H1) ≤ dim(H2), an isometry V is a linear map from H1 to
H2 such that V †V = IH1 [9, 10].

6The interpretation of inner product as probability follows from Born rule
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Figure 4: Quantum measurement

Definition 3.18. (Unitary Evolution) The evolution of a quantum state is described by a unitary
transformation. Suppose a unitary operator7 U is applied to system A1 of ρA1A2

. Then the evolved
quantum state can be written as

ρ′A1A2
= UA1

ρA1A2
U†
A1

= (U ⊗ IA2
)ρA1A2

(U ⊗ IA2
)†,

where IA2 denotes the identity in L(A2).
Definition 3.19. (Identity Channel) For quantum systems A1, A2 with orthogonal bases
{|i⟩A1

}di=1, {|i⟩A2
}di=1, the identity channel I, from L(A1) to L(A2) with respect to these bases is

denoted by IA1→A2
, where IA1→A2

(|i⟩⟨j|A1
) = |i⟩⟨j|A2

.
Definition 3.20. (Quantum Channel) A linear map EA1→A2

: L(A1) → L(A2) is a quantum
channel if it satisfies the following conditions:

• Tr(EA1→A2)(ρA1) = Tr(ρA1), i.e., trace-preserving and

• (IA ⊗ EA1→A2)(IA ⊗ ρA1) ≥ 0 for all ρA1 ≥ 0, i.e., completely positive.

In other words, a quantum channel is a linear, completely positive and trace-preserving map.

We conclude the brief discussion about the mathematical framework of quantum mechanics. Figure 5
summarizes a quantum information processing task, which includes (i) the preparation of quantum
states, i.e., encoding, (ii) performing some quantum operation, for example, passing the input
quantum state through a quantum channel, and (iii) decoding the classical outcome by performing a
quantum measurement.

Figure 5: Schematic of a quantum information processing task.

In the following subsections, we discuss the statistical distance between two quantum states, i.e., how
to measure the closeness of two quantum states and quantum information quantities. We refer the
reader to [9, 10] for additional understanding of distance and information measures.

3.4 Distance Measures

Distance measure quantifies the closeness of quantum states. In this subsection, we discuss two
well-studied distance measures for sub-normalized quantum states, namely, (i) trace distance and
(ii) purified distance. We begin by defining the trace distance followed by the purified distance. We
further provide brief intuition about these distance measures. However, for detailed discussion, we
refer to [8].

7Given two Hilbert spaces H1 and H2 with dim(H1) = dim(H2), an unitary U is a linear map from H1 to
H2 such that V †V = V V † = IH1 [9, 10].
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Definition 3.21. (Trace Norm) The trace norm or Schatten 1-norm ∥ρ∥1 of a quantum state ρ is
defined as

∥ρ∥1 = Tr{
√
ρ†ρ}.

The trace norm induces a distance measure between quantum states called trace distance.

Definition 3.22. (Trace Distance) Given any two quantum states ρ and σ, the trace distance between
them is as follows:

∥ρ− σ∥1.

For any two quantum states ρ and σ, the following bounds hold for the trace distance:

0 ≤ ∥ρ− σ∥1 ≤ 2.

The trace distance attains a lower bound when two quantum states are equivalent, i.e., there exists no
measurement that can distinguish ρ and σ. The trace distance attains the upper bound when ρ and σ
have support on orthogonal subspaces, i.e., there exists a measurement that can distinguish ρ and σ.

Definition 3.23. (Generalized Fidelity) The generalized fidelity between two quantum states ρ and
σ is defined as

F̄ (ρ, σ) = F (ρ, σ) +
√

(1− Tr(ρ) Tr(σ)),

where F (ρ, σ) = ∥√ρ
√
σ∥1 is the notion of fidelity between normalized quantum states. Note that if

either of the quantum states is normalized, then generalized fidelity is the same as the fidelity, i.e.,
F̄ (ρ, σ) = F (ρ, σ).

Definition 3.24. (Purified Distance) The purified distance between two quantum states ρ and σ is
defined as

P (ρ, σ) =
√
1− F̄ (ρ, σ).

The purified distance is a metric on the set of sub-normalized quantum states. The purified distance
and trace distance are closely related as, for any two states ρ, σ, we have [15],

1

2
∥ρ− σ∥1 ≤ P (ρ, σ) ≤

√
2∥ρ− σ∥1.

Definition 3.25. (ε-quantum ball) Let HA be a Hilbert space. The ε-quantum ball around a quantum
state ρA ∈ S≤(A) of the system A is defined as the collection of quantum states {σA ∈ S≤(A)}
such that the purified distance between ρA and σA is not more than ε, i.e.,

Bε(ρA) = {σA ∈ S≤(A) : P (ρA, σA) ≤ ε}.

We use the above definition to describe the notion of smooth conditional min-entropy of a quantum
system in the next section.

3.5 Information Quantities

The term “information” in the context of information theory is a measure of how much we can
learn from the outcome of a random experiment. Information can be classical, quantum, or both
depending on the physical source of information. For example, measuring the position of an electron
carries quantum information, whereas flipping a coin carries classical information. The fundamental
information measure in classical and quantum information theory is entropy. Entropy is the expected
amount of information contained in an outcome of a random experiment [16]. In this section, we
define the various entropy measures that are required to provide the information-theoretic operational
interpretations of randomness extractors. We discuss some of their mathematical properties. However,
we exclude the proofs; for further understanding, we refer to [9, Ch-10,11]. We start by defining
quantum entropy, also known as Von Neumann entropy for general quantum systems. Furthermore,
we define quantum (Von-Neumann) conditional entropies. We then discuss the condition min-entropy
of a bipartite quantum system analogous to classical conditional min-entropies. Finally, we conclude
the subsection with the definition of smooth conditional min-entropy, which is helpful in quantum
cryptography, especially in the context of entropic uncertainty, noisy storage model, and privacy
amplification [17].
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Definition 3.26. (Von Neumann Entropy) The entropy of a quantum state ρA ∈ S≤(A) is defined
as

H(A)ρ = −Tr(ρA log ρA)
8.

Definition 3.27. (Conditional Von Neumann Entropy) The conditional entropy of quantum system
A given B for bipartite quantum state ρAB ∈ S≤(AB) is defined as

H(A|B)ρ = H(AB)ρ −H(B)ρ,

where H(AB)ρ = −Tr(ρAB log ρAB) is the Von Neumann entropy of the bipartite state ρAB .

We provide the definitions of the min- and max-based information measures analogous to Def. 2.2.

Definition 3.28. (Min-Conditional Entropy) The min-conditional entropy of a bipartite quantum
state ρAB with respect to a quantum state σB is defined as

Hmin(A|B)ρ|σ = max{λ ∈ R : 2−λ · I⊗ σB ≥ ρAB}

Definition 3.29. (Conditional Min-Entropy) The conditional min-entropy of a bipartite quantum
state ρAB is defined as

Hmin(A|B)ρ = max
σB∈S(B)

Hmin(A|B)ρ|σ

To interpret a conditional information measure, suppose Alice and Bob want to share a bipartite
quantum state ρAB . Alice and Bob have access to systems A and B, respectively. The conditional
entropy measures the average uncertainty Bob has about Alice’s state upon sampling from his own
system.

The above-mentioned entropies have operational interpretation only in an independent and identically
(IID) distributed asymptotic setting. Therefore, for an operational characterization of a generalized
quantum system, we need a notion of smooth entopies [15].

Definition 3.30. (Smooth Conditional Min-Entropy) Let ρAB ∈ S≤(AB) be a quantum state and
ε ≥ 0. The ε-smooth conditional min-entropy of A given B is defined as

Hε
min(A|B)ρ = sup

σAB∈Bε(ρAB)

Hmin(A|B)σ.

4 Quantum-to-Classical Randomness Extractors

In this section, we study quantum-to-classical randomness extractors (QC-extractors). The main
objective of this section is to answer the following question: how can we extract classical randomness
from a physical (quantum) source ρAE by performing measurements on the quantum state ρA?
Here, A is the accessible quantum source, and E is the environment or eavesdropper correlated
with A. Similar to the study of classical extractors in § 2, we want to extract randomness from a
quantum source given min-entropy Hmin(A|E)ρ ≥ k. It is worth noting that, unlike the classical
world, quantum mechanics does allow for the generation of true randomness in case we can prepare
the desired quantum source. For example, if we could prepare the state |+⟩ = 1/

√
2(|0⟩ + |1⟩)

or |−⟩ = 1/
√
2(|0⟩ − |1⟩) and measure it in the computational basis9, i.e., M0 = |0⟩⟨0| and

M1 = |1⟩⟨1|. Then, we get a true random coin. However, this would require preparing the exact
source of this form. In general, we want to construct a QC extractor that works for any unknown
quantum source as long as it has a sufficiently high min-entropy.

To understand the definition of quantum extractors, consider a classical extractor as a family of
permutations acting on the possible values of the source such that it applies a typical permutation
from the family to the input for any probability distribution on input bits strings with high min-entropy,
which induces an almost uniform probability distribution on a prefix of the output. We define a
QQ-extractor similarly in the way that lets the operations be general unitary transformations and the
input of the extractor be quantum.

8All logarithms are base 2 unless specified.
9{|0⟩, |1⟩} is known as the computational basis of a qubit system, whereas {|+⟩, |−⟩} is known as Hadamard

basis of a qubit system
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Definition 4.1. (QQ-extractor [2]) Let A = A1A2 (entangled system) with n = log |A|, define the
trace-out map TrA2 : L(A) → L(A1) by TrA2(·) =

∑
a2
⟨a2|(·)|a2⟩, where {|a2⟩} is an orthonormal

basis of A2. For k ∈ [−n, n] and ϵ ∈ [0, 1], a (k, ϵ)-QQ-extractor is a set {U1, . . . , UL} of unitary
transformations on A such that for all states ρAE ∈ S(AE) satisfying Hmin(A|E)ρ ≥ k, we have

1

L

L∑
i=1

∥∥∥∥TrA2
(UiρAEU

†
i )−

IA1

|A1|
⊗ ρE

∥∥∥∥
1

≤ ϵ.

where logL is called the seed size of the QQ-extractor.

More often than not, we only need a quantum extractor as it is usually sufficient to extract random
classical bits. Doing so is much easier than obtaining random qubits. This motivates our need for
quantum-classical extractors, where the output system M is measured in the computational basis.
Generally, our QC-extractor can be represented as given in Figure 6. We take a quantum input system
with our seed and mix it. Mixing is done with the unitary operation, where we take one basis of the
Hilbert space of the quantum system and rotate it into another Hilbert space. After mixing, we use
the process of measuring and discarding to generate our classical output system. For that, first, we
define the measurement map for HM ⊆ HN as TN→M : HN → HM ,

TN→M (·) =
∑
m,m′

⟨mm′|(·)|mm′⟩|m⟩⟨m|M

where {|mm′⟩}, {|m⟩} are orthonormal bases of HN ,HM , respectively. We can also observe this
map as tracing outN/M , and measuring the remaining systemM in the basis {|m⟩}. Using the above
map, we will define quantum-classical min-entropy extractors against quantum side information.
Definition 4.2. (QC-extractor [2]) Let A = A1 ⊗A2 (separable system) with n = log |A|. Define
the measurement map TA→A1

: L(A) → L(A2) by

TA→A1
(·) =

∑
a1a2

⟨a1a2|(·)|a1a2⟩|a1⟩⟨a1|, (4.1)

where {|a1⟩}, {|a2⟩} are standard orthonormal bases for A1, A2 respectively.

For k ∈ [−n, n] and ε ∈ [0, 1], a (k, ε)-QC-extractor is a set {U1, . . . , UL} of unitary transformations
on A such that for all states ρAE ∈ S(AE) satisfying Hmin(A|E)ρ ≥ k, we have

1

L

L∑
i=1

∥∥∥∥TA→A1
(UiρAEU

†
i )−

IA1

|A1|
⊗ ρE

∥∥∥∥
1

≤ ε.

logL is called the seed size of the QC-extractor.

The reason we use this definition is that we want the output of the extractor to be determined by the
source and the choice of the seed. In the quantum setting, a natural way of translating this requirement
is by imposing that an adversary holding a system that is maximally entangled with the source can
perfectly predict the output.

4.1 Examples of QC-extractors

Two-independent hashing, also known as universal hashing, is one of the most important extractor
constructions. We discussed this briefly in § 2. Basically, it includes selecting two hash functions
from a family of hash functions such that it guarantees that the hash codes of both the designated keys
are independent random variables [18]. In this article, we focus on the theory of unitary 2-design,
which can be seen as the quantum generalization of two-independent hash functions.

There are many known efficient constructors of unitary 2-designs [[19], [20]], and in an n-qubit
space, such unitaries can be computed with circuits of size O(n2). The following is immediate using
a general decoupling result from [21, 22].
Corollary 4.3. Let A = A1 ⊗ A2 with n = log |A|. For all k ∈ [−n, n] and all ε > 0, a unitary
2-design {U1, ...., UL} on A is a (k, ε)-QC-extractor with output size

log |A1| = min (n, n+ k − 2 log(1/ε)).
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Figure 6: Quantum-to-Classical Extractor

Similar results as above also hold true for "almost" 2-design unitaries [[23], [24]]. Now, by choosing
a reasonably small L, making a set of random unitaries, with the seed size of the same order as the
output size of the extractor, defines a QC-extractor with high probability.
Theorem 4.4. LetA = A1⊗A2 with n = log |A| and let TA→A1

: L(A) → L(A2) the measurement
map defined in (4.1). Let ε > 0 and c be a sufficiently large constant, and suppose that

log |A1| ≤ n+ k − 4 log(1/ε)− c and logL ≥ log |A1|+ log n+ 4 log(1/ε) + c.

Then, choosing {U1, . . . , UL} independently according to the Haar measure [25] defines a (k, ε)-
QC-extractor with high probability.

4.2 Bitwise QC-extractor

In this section, we discuss constructing simpler unitaries to define a QC-extractor. The construction
is composed of unitaries V acting on single qubits followed by permutations P of the computational
basis elements. Because the measurement T and the permutations P are commutative in nature,
we first apply V , measure in the computational basis, and then finally apply the permutation to the
classical outcome of the measurement. Unitaries acting on single qubits is frequently a desired
attribute for the design of cryptographic protocols, in addition to computational efficiency.

We consider a value d ≥ 2 as a prime power so that there exists a complete set of mutually unbiased
bases in dimension d. This set of bases can be represented by a set of unitary transformations given
as {V0, V1, ..., Vd} which maps the mutually unbiased bases to some standard basis. The following
example, we represent the unitary transformations when we take a full set of mutually unbiased bases
in dimension 2:

V0 =

(
1 0
0 1

)
V1 =

1√
2

(
1 1
1 −1

)
V2 =

1√
2

(
1 i
i −1

)
We now define the set Vd,n of unitary transformations on n qubits as follows:

Vd,n := {V = Vu1
⊗ ...⊗ Vun

|ui ∈ {0, 1, ..., d}}

Theorem 4.5. Let A = A1 ⊗A2 with |A| = dn, |A1| = dξn, |A2| = d(1−ξ)n and d a prime power.
Then, for δ ≥ 0 and δ′ > 0,

1

|P|
1

(d+ 1)n

∑
P∈P

∑
V ∈Vd,n

∥∥∥∥TA→A1

(
PV ρAE(PV )†

)
− I

|A1|
⊗ ρE

∥∥∥∥
1

≤
√

2(1−log(d+1)+ξ log d)n(1 + 2−Hδ
min(A|E)ρ+z) + 2(δ + δ′),

where Vd,n is defined as above, P is a family of pair-wise independent permutation matrices, and

z = log

(
2

δ′2
+

1

1− δ

)
.
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In particular, the set {PV : P ∈ P, V ∈ Vd,n} is a (k, ε)-QC-extractor provided

log |A1| ≤ (log(d+ 1)− 1)n+min{0, k} − 4 log(1/ε)− 7

and the number of unitaries is L = (d+ 1)ndn(dn − 1).

4.3 Full set of mutually unbiased bases (MUB)

We saw that QC-extractors are defined by unitary 2-designs. It is reasonable to anticipate that we can
create smaller and simpler sets of unitaries if we are simply interested in extracting random classical
bits because unitary 2-designs also define QQ-extractors. Here, we build more basic sets of unitaries
that define a QC-extractor, using a family of pair-wise independent permutations and a complete set
of mutually unbiased bases.
Definition 4.6. (MUB) A mutually unbiased basis is defined as the set of unitaries {U1, . . . , UL}
acting on A such that a state described by a vector U†

i |a⟩ of the basis i gives a uniformly distributed
outcome when measured in basis j for i ̸= j. There can be at most |A|+ 1 mutually unbiased bases
for A.
Definition 4.7. A family P of of permutations of a set X is called pair-wise independent if for all
x1 ̸= x2 and y1 ̸= y2, we have

Pr[π(x1) = y1 and π(x2) = y2] =
1

|X|(|X| − 1)
,

for any π uniformly distributed over P .

Observe that if X is a field (so that |X| is a prime power), the family

P = {x 7→ ax+ b : x ∈ X∗, b ∈ X}

is pair-wise independent. Observing permutations of the basis elements of a Hilbert space A as a
unitary transformation on A, we have the following result.
Theorem 4.8. Let A = A1 ⊗A2 with n = log |A|, where |A| is a prime power. If {U1, . . . , U|A|+1}
defines a full set of mutually unbiased bases, then for δ ≥ 0 we have

1

|P|
1

|A|+ 1

∑
P∈P

|A|+1∑
i=1

∥∥∥∥TA→A1

(
PUiρAE(PUi)

†)− IA1

|A1|
⊗ ρE

∥∥∥∥
1

≤

√
|A1|2−Hmin(A|E)ρ

|A1|+ 1
+2δ,

where P is a set of pair-wise independent permutation matrices. In particular, the set {PUi : P ∈
P, i ∈ [|A|+ 1]} defines a (k, ε)-QC-extractor provided

log |A1| ≤ n+ k − 2 log(1/ε),

and the number of unitaries is

L = (|A|+ 1)P = (|A|+ 1)|A|(|A| − 1).

The proofs of the above theorems require an understanding of concepts such as one-shot decoupling,
permutation extractors, and advanced mathematical tools from linear algebra. Thus, due to page limit
restrictions, for proof of the above theorems related to the construction of QC-extractors, we refer the
reader to [2, 8].

We summarize all the results about QC-extractors in Table 2 in the discussion section, i.e., § 6.

5 Applications

In this section, we discuss the application of QC-extraction to achieve the performance of cryp-
tographic models such as noisy storage models. We will mainly focus on two applications of
QC-extractors. First, QC-extractor gives rise to entropic uncertainty relations with quantum side
information, and second noisy storage model; in other words, any two-party cryptographic protocol
can be implemented securely as long as the adversary’s storage device has sufficiently low quantum
capacity.
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5.1 Entropic uncertainty relations with quantum side information

The uncertainty principle is one of the fundamental theories of quantum mechanics. Uncertainty
relations, originally proposed by Heisenberg ∆x∆p ≥ h

4π , is one of the most prominent examples
that show how quantum mechanics differs from the classical world. Perhaps, the best known in the
form given by Robertson [26], who extended Heisenberg’s result to two arbitrary observables 10 A
and B. Uncertainty relation states that if we prepare many copies of the state |ψ⟩, and measure each
copy individually using either observable A or B, we have

∆A∆B ≥ 1

2
|⟨ψ|[A,B]|ψ⟩|

where ∆X =
√
⟨ψ|X2|ψ⟩ − ⟨ψ|X|ψ⟩ for X = A,B is the standard deviation resulting from

measuring |ψ⟩ with observable X . This means that there is no way to simultaneously specify definite
values of non-commuting11 observables with great precision.

Entropic uncertainty relations provide a contemporary way to express the notion of uncertainty in
quantum mechanics. It has interesting applications in quantum cryptography, the entropic uncertainty
relations allow to provide the security proof of cryptographic protocols. Briefly, it provides a subtle
interplay between uncertainty and entanglement. We consider a bipartite guessing game, which
consist of Alice and Eve, to understand the entropic uncertainty relations. Entropic uncertainty
relation allows us if Eve can or cannot predict the outcomes of two non-commuting measurements
performed on Alice’s state.

Assume Eve only has classical memory, i.e., she might make measurements on the qubits during the
transmission, but she cannot keep any entanglement with herself. This is equivalent to Eve preparing
Alice’s qubits herself. We now define the guessing game below:

Guessing Game:
1. Eve: Prepares a qubit ρA and sends it to Alice
2. Alice: Chooses a random bit Θ ∈ {0, 1}
3. Alice: If Θ = 0, then Alice measures ρA in the computational basis, i.e., {|0⟩, |1⟩};

otherwise, she measures ρA in the Hadamard basis, i.e., {|+⟩, |−⟩}
4. Alice: Records the measurement outcome X ∈ {0, 1}
5. Alice: Announces Θ
6. Eve: Wins if she correctly guesses X

Figure 7 summarizes the guessing game defined above. The objective is to make sure that Eve cannot
fully predict Alice’s measurement outcome. Consider the following example, where the joint state
between Alice and Eve is

ρAE = |0⟩⟨0|A ⊗ ρE ,

where Alice measures system A in either the computational or the Hadamard basis to obtain the secret
key. To see why this captures the essence of the uncertainty principle, note that if the measurements
are non-commuting, then there exists no state ρA that Eve can prepare, which would allow her to
guess the outcome for both choices of measurements with certainty. Uncertainty can be understand
as a bound on the average probability that Eve correctly guesses X:

Pr[X | Θ] = Pr[Θ = 0] · Pr[X | Θ = 0] + Pr[Θ = 1] · Pr[X | Θ = 1]

=
1

2
[Pr[X | Θ = 0] + Pr[X | Θ = 1] ≤ ϵ,

where the second equality holds if Alice chooses her measurement basis Θ at random, i.e. with
uniform probability 1/2 for each option. In the case where Eve holds no additional information

10In quantum physics, an observable is a physical quantity that can be measured, for example, position and
momentum.

11Two observables A and B are said to be commuting if AB = BA, thus, commutator [A,B] = 0, where
[A,B] = AB −BA.
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Figure 7: The bipartite guessing game between Alice and Eve.

except for the basis where Alice has performed the measurement, it can be shown that ϵ < 1. To
understand this, suppose Eve always aims to correctly guess X regardless of whether Θ = 0 or
Θ = 1. Then she requires Pr[X | Θ = 0] = 1, i.e. she should prepare a state that will always
produce a deterministic outcome when Alice measures in the computational basis. In order for this
to happen, Eve can send the state |0⟩⟨0|A, where Alice, upon measuring in the computational basis,
will always produce X = 0. However, if Eve has used the strategy of preparing |0⟩⟨0|A and Alice
measures in the Hadamard basis, then

Pr[X | Θ = 1] = max{Pr[X = 0 | Θ = 1],Pr[X = 1 | Θ = 1]

= max{Tr[|+⟩⟨+||0⟩⟨0|],Tr[|−⟩⟨−||0⟩⟨0|]} =
1

2
.

Thus, if Eve uses this strategy of preparing ρA = |0⟩⟨0|A in order to guess Alice’s outcome X , then
whenever Θ = 1, this corresponds only to a random guess. So, in this protocol, since Eve does not
know beforehand what basis Alice will choose to measure in, she has to prepare a state that will
maximize her guessing probability in both cases of Alice measuring in the standard basis, and also
the Hadamard basis. The above example shows that this guessing probability can never be equal to 1.

Note that in order for Eve to maximize the guessing probability Pr[X | Θ] over ρA, without loss of
generality, we consider the outcome to be X = 0,

Pr[X | Θ] =
1

2
(Tr[ρA|0⟩⟨0|] + Tr[ρA|+⟩⟨+|]) = 1

2
Tr[ρA(|0⟩⟨0|+ |+⟩⟨+|)]

then she has to prepare ρA in the pure state corresponding to the eigenvector of |0⟩⟨0|+ |+⟩⟨+| with
the largest eigenvalue, which is λmax = 1 + 1/

√
2. Therefore,

Pr[X|Θ] =
1

2
+

1

2
√
2
< 1.

To calculate Eve’s guessing probability, we write a quantum state in the following form [9, 10]:

ρA =
1

2
(I+ vxX + vyY + vzZ)

for a vector v = (vx, vy, vz). Then,

Tr[ρA|0⟩⟨0|] =
1

2
(1 + vz), Tr[ρA|1⟩⟨1|] =

1

2
(1− vz),

Tr[ρA|+⟩⟨+|] = 1

2
(1 + vx), Tr[ρA|−⟩⟨−|] = 1

2
(1− vx).
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Also, Pr[X | Θ] =
1

2
max{Tr[ρA|0⟩⟨0|],Tr[ρA|1⟩⟨1|]}+

1

2
max{Tr[ρA|+⟩⟨+|],Tr[ρA|−⟩⟨−|]}

maximized over all possible states ρA. Since the maximizations of both expression are symmetric
around vz = 0, vx = 0, respectively. Consider only the case where vz, vx ≥ 0. Thus, we get,

Pr[X | Θ]ρA
=

1

2
Tr[ρA(|0⟩⟨0|+ |+⟩⟨+|)] = 1

4
(2 + vx + vz), v2x + v2z ≤ 1.

Note that the maximum occurs when v2x+v
2
z = 1. Therefore, by the change of variable as vx = cos(t),

vz = sin(t), we get, the probability of Eve winning the game is

Pr[X | Θ]ρA
=

1

2
+

1

2
√
2
≈ 0.85.

In a more general scenario, Eve may even have classical information about ρA. Following the same
steps as above, we can show that

Pr[X|ΘC]ρAC
=

1

2
+

1

2
√
2
≈ 0.85.

Thus, the min-entropy Hmin(X | ΘC) = − log Pr[X | ΘC] ≈ 0.22.

If we always allow Eve maximum information about everything, she may prepare a larger state ρAE ,
i.e., Eve also holds the purification and send the ρA to Alice. Then one can show that if Eve can be
entangled with Alice’s qubit, then she can guess perfectly.

Finally, if we want to keep X secret from Eve, we need to use two aspects of quantum mechanics:

1. Uncertainty: If Eve has no (or little) entanglement with Alice, then she cannot certainly
predict the outcomes of two non-commuting measurements. So it is difficult to guess Alice’s
measurement outcomes, i.e., Pr[X|EΘ] < 1, or equivalently, Hmin(X|EΘ) > 0.

2. Entanglement: We need to ensure there exists some entanglement between Alice and Eve.
For this, we can use the fact that entanglement is monogamous 12, that is if we find a
large amount of entanglement between Alice and Bob, then we know that Eve has very
little entanglement with either Alice or Bob, and therefore the min-entropy should be large.
Hence, Eve cannot guess the outcome of Alice, and entropic uncertainty ensures security!

Below, in Table 1, we summarize the various methods used for constructing QC-extractions to achieve
the uncertainty relations for the min-entropy [8, 2]:

Lower bounds for smooth conditional min-entropy Hmin

Unitary 2-design log |A|+Hδ
min(A|E)ρ − log

(
1

(ε2/2−2δ)2

)
Almost unitary 2-design log |A|+Hδ

min(A|E)ρ − log
(

1
(ε2/2−2δ)2

)
− log(1 + ζ)

All |A|+ 1 MUBs log(|A|+ 1) +Hδ
min(A|E)ρ − log

(
1

(ε2/2−2δ)2

)
Single qudit MUBs n(log(d+ 1)− 1) + min

{
0, Hδ

min(A|E)ρ − log
(

2
δ′2 + 1

1−2δ

)}
− log

(
1

(ε2/2−2δ−δ′)2

)
− 1

Table 1: Entropic uncertainty relations with quantum side information for the smooth conditional
min-entropy for approximation parameters ε > 0, ζ ≥ 0, δ ≥ 0, and δ′ > 0.

5.2 Noisy-Storage Model

Quantum computer benefits computing resources for those algorithms with computational assump-
tions, but a drawback is that the security can be broken retroactively. Most two-party protocols
that have been executed to date will lose their security because the adversary can use the quantum
computer to break the protocol. One way to solve this problem is to consider physical assumptions
rather than computational assumptions. The most straightforward one is storage.

12Please see the page on Wikipedia Monogamy of entanglement
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In classical cryptography, physical assumptions are usually made as the bounded-storage model,
which assumes that the adversary can only store a certain number of classical bits. After introducing
quantum communication, one now assumes that the adversary’s quantum storage is limited to a certain
number of qubits but no restriction on the classical bits. This is known as bounded-quantum-storage
model. More generally, one can also invoke the noisy storage model, where the quantum storage is
not only bounded but also noisy in general [3], to incorporate both the amount of storage and noise.
[27] introduced the concept of a noisy-storage model.
Definition 5.1. (Noisy Quantum Memory) Given a device whose input states are in some Hilbert
space Hin, a noisy quantum memory is a state ρ stored in the device decoheres over time. That is, the
content of the memory after some time t is a state Ft(ρ), where Ft : Hin → Hout is a completely
positive trace-preserving map corresponding to the noise in the memory.

Considering the security, the intuition is that security is possible as long as the amount of information
that the adversary can store in his memory device is limited. Therefore, the central assumption of
the model is that during waiting times δt introduced into the protocol, the adversary can only store
quantum information using a limited and unreliable quantum memory device. In particular, the
adversary can store an unlimited amount of classical information while also doing any operation at
the moment. That means he is able to use any encoding and decoding operations before and after
using his memory device. Notice that the input spaces can be in the form of Hin = (Cd)⊗N and
channels F = N⊗N with N : Hin → Hout.

To analyze the security of a noisy-storage model, we first introduce a technique called weak string
ensure.
Definition 5.2. (Weak String Erasure) In a two-party secure computation, weak string erasure is a
primitive that provides Alice with a random bit string Xn ∈ {0, 1}n and Bob with a randomly chosen
substring XI=(Xi1

,Xi2
,...,Xir )

together with index set I = {i1, i2, . . . , ir} specifying the location of
these bits [27].

The motivation behind the primitive weak string erasure was to create a basic quantum protocol
that builds up classical correlations between Alice and Bob which are later used to implement more
interesting cryptographic primitives. We can construct a very simple protocol for weak string erasure
and prove its security using a bitwise QC-randomness extractor.

The protocol is basically the same as the one provided in [27], but in our case, instead of using only 2
MUBs per qubit, there will be 3. The procedure is as follows:

Protocol Weak String Erasure (WSE):
Output: xn ∈ {0, 1}n to Alice, (I, |‡|I) ∈ 2[n] × {0, 1}I to Bob.

1. Alice: Creates n EPR-pairs Φ, and sends half of each pair to Bob.
2. Alice: Chooses a bases-specifying string θn ∈R {0, 1, 2}n uniformly at random.

For all i, she measures the i-th qubit in the basis θi to obtain outcome xi.
3. Bob: Chooses a basis string θ̃i ∈R {0, 1, 2}n uniformly at random. When

receiving the i-th qubit, Bob measures it in the basis of θ̃n to obtain outcome x̃i.

Both parties wait time ∆t.

4. Alice: Sends the basis information θn to Bob and outputs xn.
5. Bob: Computes I = {i ∈ [n]|θi = θ̃i}, and outputs (I, |‡|I) := (I, x̃I).

The proof of the correctness of the protocol and in regards to a dishonest Alice can be found in [27].
To prove the security against a dishonest Bob, we first consider the general form that any attack on
Bob takes in the Figure 8.

Note that the noisy-storage model only assumes that Bob has to use his storage device during waiting
times δt, which means when attacking the protocol above, he can store the incoming qubits perfectly
until n qubits arrive. Let Q denote Bob’s quantum register containing all n qubits. Since there is no
communication between Alice and Bob during the transmission of these n qubits, we can assume
that Bob first waits for all n qubits to arrive before mounting any form of attack. Besides, as any
operation in quantum theory is a quantum channel, Bob’s attack can be described by a quantum
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Figure 8: Any attack of dishonest Bob is described by an encoding attack E and a ‘guessing’ attack.

channel E : S≤(Q) → S≤(Hin ⊗M), where this map takes Q to some quantum state on the input
of Bob’s storage device, Hin, and M , some arbitrarily large amount of classical information. For
example, E could be an encoding into an error-correcting code.

Then, by the assumption of the noisy-storage model, Bob’s quantum memory is then affected by
noise F : S≤(Hin) → S≤(Hout). After the waiting time, the joint state held by Alice and Bob in
the purified version of the protocol (i.e., before Alice measures) is thus of the form

ρABM = IA ⊗ [(F ⊗ IM ) ◦ E ](Φ⊗n)

where Φ is an EPR-pair. And after the waiting time, Bob can perform any form of quantum operation
to try and recover information from the storage device. Note that, in principle, Bob’s goal is to
recover X alone, for which he could potentially use his basis information Θ. In fact, we can
ignore the basis information in the analysis. That is, we only need to analyze decoding maps
D : S≤(Hin ⊗M) → S≤(Q) trying to recover the initial entanglement between Alice and Bob.

After implementing the task of ‘Weak String Erasure’ as above, we consider the usage of bitwise
QC-extrators as linking security to the entanglement fidelity (quantum capacity) of the noisy quantum
storage. Earlier, we came across the fact that one of the desirable properties of a bitwise QC-extrator
is that, in addition to its computational efficiency, we observe that the unitaries act on single qubits.
So, by changing the encoding from a qubit scheme to a qubit six-state scheme, we use the bitwise
QC-extrator, defined in Theorem 4.5. This gives us a strong converse classical capacity replaced by
the strong converse quantum capacity. This then extends the parameter regime where the security of
all existing protocols can be proven. Even though there is in general, no closed expression for the
strong converse quantum capacity, we can calculate security rates by means of the entanglement cost
of quantum channels, which is an upper bound on the strong converse quantum capacity. As a brief
overview, the entanglement cost of a quantum channel is the minimal rate at which entanglement
(between sender and receiver) is needed in order to simulate many copies of a quantum channel in the
presence of free classical communication.

6 Discussion

In this report, we introduced the concept of a randomness extractor. We discussed classical ran-
domness extractors and provided examples and applications, namely, 2-universal extractors. We
further discussed the concept of quantum-to-classical randomness extractors. We showed that for a
QC-extractor to distill randomness from a quantum state ρAE , the relevant quantity to bound is the
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conditional min-entropy Hmin(A|E)ρ. This is in formal analogy with classical-to-classical extractors,
in which case the relevant quantity is Hmin(X|E)ρ.

We showed various properties of QC-extractors and gave several examples for QC-extractors. We
compare our results about QC-extractors with CC-extractors in Table 2.

CC-extractors QC-extractors
Seed Lower bound log(n− k) + 2 log(1/ε) log(1/ε)

Upper bounds log(n− k) + 2 log(1/ε) (NE) m+ log n+ 4 log(1/ε)
c log(n/ε) 3n

Output Upper bound k − 2 log(1/ε) n+H
√
ε

min(A|E)
Lower bound k − 2 log(1/ε) n+ k − 2 log(1/ε)

Table 2: Bounds on the seed size and output size in terms of (qu)bits for different kinds of (k, ε)-
randomness extractors. Here, n refers to the number of input (qu)bits, m the number of output
(qu)bits, and k the min-entropy of the input Hmin(A|E).

There is an extensive difference between the upper and lower bounds for the seed size of QC-
extractors. We were only able to show the existence of QC-extractors with seed length roughly the
output size m, but we believe that it should be possible to find QC-extractors with much smaller
seeds, say O(polylog(n)) bits long, where n is the input size. However, entirely different techniques
might be needed to address this question.

We showed that every QC-extractor gives rise to entropic uncertainty relations with quantum side
information for the Von Neumann (Shannon) entropy and the min-entropy. Here the seed size
translates into the number of measurements in the uncertainty relation. Since it is, in general difficult
to obtain uncertainty relations for a small set of measurements (except for the special case of two),
finding QC-extractors with a small seed size is also worth pursuing from the point of view of
uncertainty relations.

We used the bitwise QC-extractor from § 4 to show that the security in the noisy storage model can
be related to the strong converse rate of the quantum storage, a problem that attracted quite some
attention over the last few years. Here one can also see the usefulness of bitwise QC-extractors for
quantum cryptography. Indeed, any bitwise QC-extractor would yield a protocol for weak string
erasure. Bitwise measurements have a very simple structure and hence are implementable with
current technology. In that respect, it would be interesting to see if a similar QC-extractor can also
be proven for only two (complementary) measurements per qubit. This would give a protocol for
weak string erasure. It is expected that QC-extractors will have many more applications in quantum
cryptography, e.g., quantum key distribution and privacy amplification.

We encourage the reader to go through the following video, which provides a brief overview of the
topic: Quantum-to-Classical Randomness Extractor13.
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